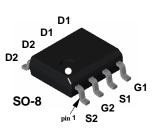
June 1999

FDS6982

# 

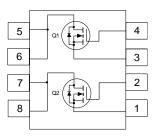
# FDS6982

# **Dual N-Channel, Notebook Power Supply MOSFET**


### **General Description**

This part is designed to replace two single SO-8 MOSFETs in synchronous DC:DC power supplies that provide the various peripheral voltage rails required in notebook computers and other battery powered electronic devices. FDS6982 contains two unique 30V, N-channel, logic level, PowerTrench® MOSFETs designed to maximize power conversion efficiency.

The high-side switch (Q1) is designed with specific emphasis on reducing switching losses while the low-side switch (Q2) is optimized for low conduction losses (less than  $20m\Omega$  at V<sub>GS</sub> = 4.5V).


#### Applications

- Battery powered synchronous DC:DC converters.
- Embedded DC:DC conversion.



# Features

- Q2: 8.6A, 30V.  $R_{DS(on)} = 0.015 \ \Omega \ @ V_{GS} = 10V$  $R_{DS(on)} = 0.020 \ \Omega \ @ V_{GS} = 4.5V$
- Q1: 6.3A, 30V.  $R_{DS(on)} = 0.028 \ \Omega \ @ V_{GS} = 10V$  $R_{DS(on)} = 0.035 \ \Omega \ @ V_{GS} = 4.5V$
- Fast switching speed.
- High performance trench technology for extremely low R<sub>DS(ON)</sub>.



## Absolute Maximum Ratings T<sub>A</sub> = 25°C unless otherwise noted

| Symbol                            | Parameter                               |           | Q2          | Q1          | Units |
|-----------------------------------|-----------------------------------------|-----------|-------------|-------------|-------|
| V <sub>DSS</sub>                  | Drain-Source Voltage                    |           | 30          | 30          | V     |
| V <sub>GSS</sub>                  | Gate-Source Voltage                     |           | <u>+</u> 20 | <u>+</u> 20 | V     |
| I <sub>D</sub>                    | Drain Current - Continuous              | (Note 1a) | 8.6         | 6.3         | Α     |
|                                   | - Pulsed                                |           | 30          | 20          |       |
| PD                                | Power Dissipation for Dual Operation    |           | 2           | W           |       |
|                                   | Power Dissipation for Single Operation  | (Note 1a) | 1.          | 6           |       |
|                                   |                                         | (Note 1b) | 1           |             |       |
|                                   |                                         | (Note 1c) | 0.          | 9           |       |
| T <sub>J</sub> , T <sub>stg</sub> | Operating and Storage Junction Temperat | ure Range | -55 to      | +150        | ∘C    |

# Thermal Characteristics

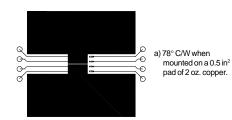
| R <sub>θJA</sub>  | Thermal Resistance, Junction-to-Ambient | (Note 1a) | 78 | ∘C/W |
|-------------------|-----------------------------------------|-----------|----|------|
| R <sub>θ</sub> JC | Thermal Resistance, Junction-to-Case    | (Note 1)  | 40 | ∘C/W |

# Package Marking and Ordering Information

| Device Marking | Device  | Reel Size | Tape Width | Quantity   |
|----------------|---------|-----------|------------|------------|
| FDS6982        | FDS6982 | 13"       | 12mm       | 2500 units |

FDS6982

| Symbol                               | Parameter                                      | Test Conditions                                                                                | Туре     | Min      | Тур                     | Мах                     | Units      |
|--------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------|----------|----------|-------------------------|-------------------------|------------|
| Off Cha                              | racteristics                                   |                                                                                                |          |          |                         |                         | -          |
| BV <sub>DSS</sub>                    | Drain-Source Breakdown<br>Voltage              | $V_{GS}$ = 0 V, I <sub>D</sub> = 250 µA                                                        | Q2<br>Q1 | 30<br>30 |                         |                         | V          |
| $\frac{\Delta BV_{DSS}}{\Delta T_J}$ | Breakdown Voltage<br>Temperature Coefficient   | $I_D = 250 \ \mu$ A, Referenced to $25^{\circ}$ C                                              | Q2<br>Q1 |          | 27<br>26                |                         | mV/°C      |
| I <sub>DSS</sub>                     | Zero Gate Voltage Drain<br>Current             | $V_{DS} = 24 \text{ V},  V_{GS} = 0 \text{ V}$                                                 | All      |          |                         | 1                       | μA         |
| I <sub>GSSF</sub>                    | Gate-Body Leakage, Forward                     | V <sub>GS</sub> = 20 V, V <sub>DS</sub> = 0 V                                                  | All      |          |                         | 100                     | nA         |
| I <sub>GSSR</sub>                    | Gate-Body Leakage, Reverse                     | V <sub>GS</sub> = -20 V, V <sub>DS</sub> = 0 V                                                 | All      |          |                         | -100                    | nA         |
| V <sub>GS(th)</sub>                  | racteristics (Note 2)   Gate Threshold Voltage | $V_{DS}=V_{GS},I_{D}=250\;\mu\text{A}$                                                         | Q2<br>Q1 | 1<br>1   | 2.2<br>1.6              | 3<br>3                  | V          |
| $V_{GS(th)}$                         | Gate Threshold Voltage                         | $V_{DS} = V_{GS}$ , $I_D = 250 \ \mu A$<br>$I_D = 250 \ \mu A$ , Referenced to $25^{\circ}C$   |          |          |                         | -                       | v<br>mV/°( |
| $\Delta T_J$                         | Temperature Coefficient                        |                                                                                                | Q1       |          | -4                      |                         | ,          |
| R <sub>DS(on)</sub>                  | Static Drain-Source<br>On-Resistance           |                                                                                                | Q2       |          | 0.012<br>0.018<br>0.016 | 0.015<br>0.024<br>0.020 | Ω          |
|                                      |                                                |                                                                                                | Q1       |          | 0.021<br>0.038<br>0.028 | 0.028<br>0.047<br>0.035 | Ω          |
| I <sub>D(on)</sub>                   | On-State Drain Current                         | $V_{GS}$ = 10 V, $V_{DS}$ = 5 V                                                                | Q2<br>Q1 | 30<br>20 |                         |                         | A          |
| <b>g</b> fs                          | Forward Transconductance                       | V <sub>DS</sub> = 5 V, I <sub>D</sub> = 8.6 A<br>V <sub>DS</sub> = 5 V, I <sub>D</sub> = 6.3 A | Q2<br>Q1 |          | 50<br>40                |                         | S          |
| Dynami                               | c Characteristics                              |                                                                                                |          |          |                         |                         |            |
| Ciss                                 | Input Capacitance                              | V <sub>DS</sub> = 10 V, V <sub>GS</sub> = 0 V,<br>f = 1.0 MHz                                  | Q2<br>Q1 |          | 2085<br>760             |                         | pF         |
| C <sub>oss</sub>                     | Output Capacitance                             |                                                                                                | Q2<br>Q1 |          | 420<br>160              |                         | pF         |
| C <sub>rss</sub>                     | Reverse Transfer Capacitance                   |                                                                                                | Q2<br>Q1 |          | 160<br>70               |                         | pF         |


FDS6982, Rev. D1

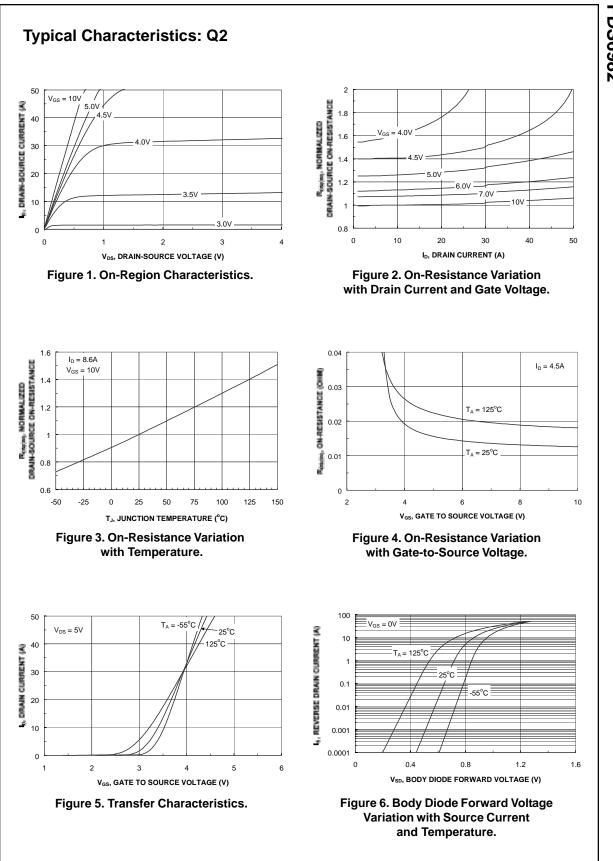
FDS6982

| Symbol              | Parameter                     | Test Conditions                                                                     | Туре | Min | Тур  | Max | Units |
|---------------------|-------------------------------|-------------------------------------------------------------------------------------|------|-----|------|-----|-------|
| Switchir            | ng Characteristics (Note      | 2)                                                                                  |      |     |      |     |       |
| t <sub>d(on)</sub>  | Turn-On Delay Time            | $V_{DD} = 15 \text{ V}, \text{ I}_{D} = 1 \text{ A},$                               | Q2   |     | 15   | 27  | ns    |
|                     | -                             | $V_{GS} = 10V, R_{GEN} = 6 \Omega$                                                  | Q1   |     | 10   | 18  |       |
| t <sub>r</sub>      | Turn-On Rise Time             |                                                                                     | Q2   |     | 11   | 20  | ns    |
|                     |                               |                                                                                     | Q1   |     | 14   | 25  |       |
| t <sub>d(off)</sub> | Turn-Off Delay Time           |                                                                                     | Q2   |     | 36   | 58  | ns    |
|                     | -                             |                                                                                     | Q1   |     | 21   | 34  |       |
| t <sub>f</sub>      | Turn-Off Fall Time            |                                                                                     | Q2   |     | 18   | 29  | ns    |
|                     |                               |                                                                                     | Q1   |     | 7    | 14  |       |
| Qq                  | Total Gate Charge             | Q2                                                                                  | Q2   |     | 18.5 | 26  | nC    |
| 5                   |                               | $V_{DS} = 15 \text{ V}, I_{D} = 8.6 \text{ A}, V_{GS} = 5 \text{ V}$                | Q1   |     | 8.5  | 12  |       |
| Q <sub>gs</sub>     | Gate-Source Charge            |                                                                                     | Q2   |     | 7.3  |     | nC    |
| 5-                  |                               | Q1                                                                                  | Q1   |     | 2.4  |     |       |
| Q <sub>qd</sub>     | Gate-Drain Charge             | $V_{DS} = 15 \text{ V}, \text{ I}_{D} = 6.3 \text{ A}, \text{V}_{GS} = 5 \text{ V}$ | Q2   |     | 6.2  |     | nC    |
| 3-                  | _                             |                                                                                     | Q1   |     | 3.1  |     |       |
|                     |                               |                                                                                     |      |     |      |     |       |
| Drain-So            | <u>purce Diode Characteri</u> | stics and Maximum Ratings                                                           | 5    |     |      |     |       |
| ls                  | Maximum Continuous Drain-S    | Source Diode Forward Current                                                        | Q2   |     |      | 1.3 | Α     |
|                     |                               |                                                                                     | Q1   |     |      | 1.3 |       |
| V <sub>SD</sub>     | Drain-Source Diode Forward    | $V_{GS} = 0 \text{ V}, I_{S} = 1.3 \text{ A}$ (Note 2)                              | Q2   |     | 0.72 | 1.2 | V     |
|                     | Voltage                       | $V_{GS} = 0 V, I_S = 1.3 A$ (Note 2)                                                | Q1   |     | 0.74 | 1.2 | 1     |

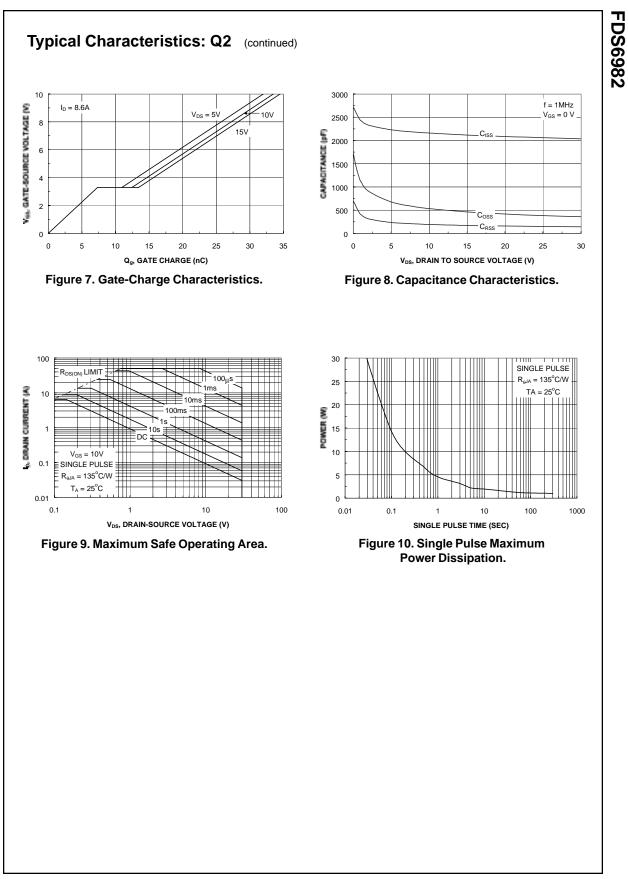
Notes:

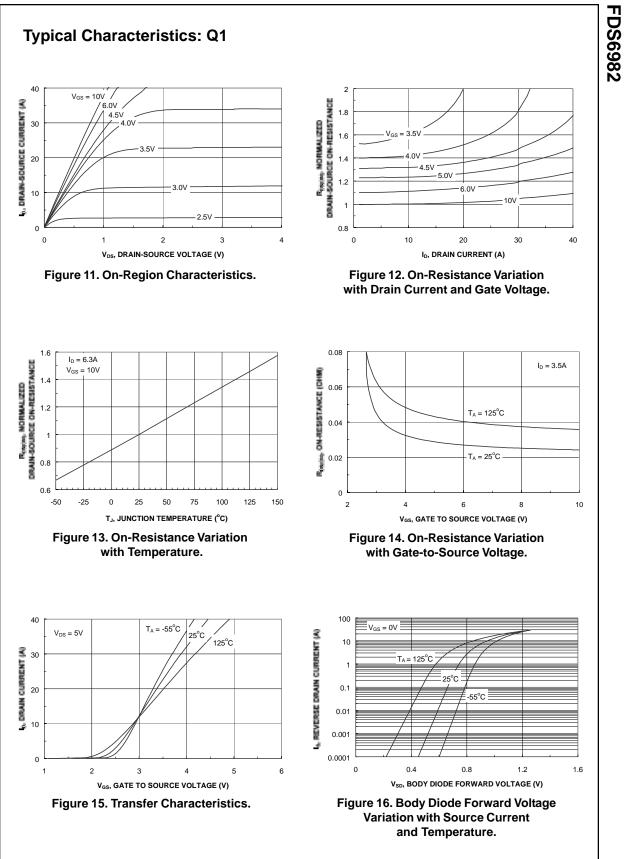
 R<sub>eJA</sub> is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R<sub>eJC</sub> is guaranteed by design while R<sub>eCA</sub> is determined by the user's board design. Thermal rating based on independant single device opperation. 



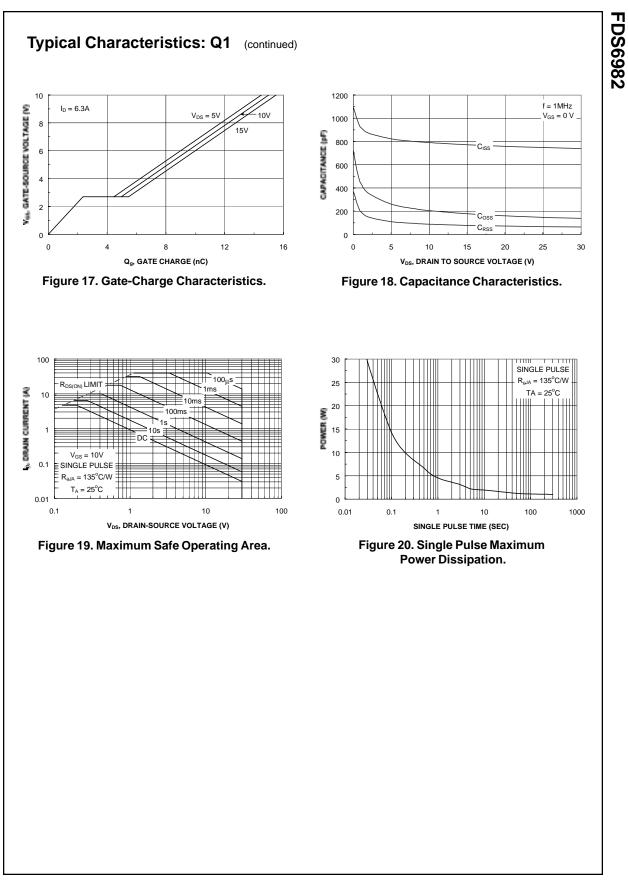


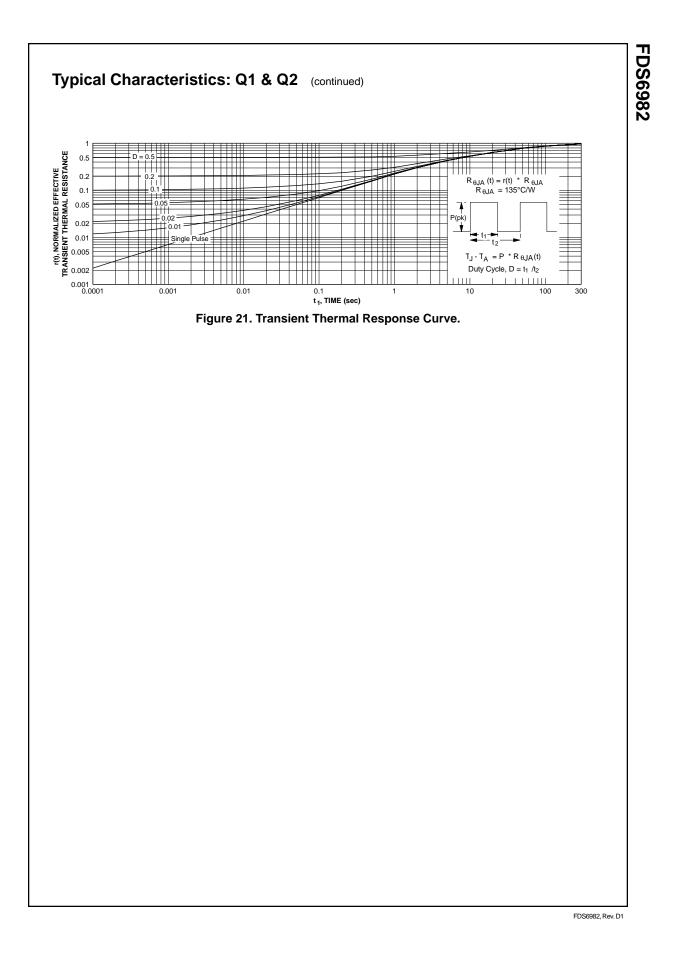

b) 125° C/W when mounted on a 0.02 in² pad of 2 oz. copper.


c) 135° C/W when mounted on a minimum pad.


Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width  $\leq$  300  $\mu$ s, Duty Cycle  $\leq$  2.0%





FDS6982





FDS6982, Rev. D1





#### TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E<sup>2</sup>CMOS<sup>™</sup> EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator<sup>™</sup> POP<sup>™</sup> GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

**OPTOLOGIC™** OPTOPLANAR™ PACMAN™ Power247™ PowerTrench<sup>®</sup> QFET™ QS™ QT Optoelectronics<sup>™</sup> Quiet Series<sup>™</sup> SILENT SWITCHER®

SMART START™ VCX™ STAR\*POWER™ Stealth™ SuperSOT<sup>™</sup>-3 SuperSOT<sup>™</sup>-6 SuperSOT<sup>™</sup>-8 SyncFET™ TinyLogic™ TruTranslation<sup>™</sup> UHC™ UltraFET<sup>®</sup>

STAR\*POWER is used under license

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### **PRODUCT STATUS DEFINITIONS**

**Definition of Terms** 

| Formative or<br>In Design | This datasheet contains the design specifications for<br>product development. Specifications may change in<br>any manner without notice.                                                                                          |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First Production          | This datasheet contains preliminary data, and<br>supplementary data will be published at a later date.<br>Fairchild Semiconductor reserves the right to make<br>changes at any time without notice in order to improve<br>design. |
| Full Production           | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at<br>any time without notice in order to improve design.                                                             |
| Not In Production         | This datasheet contains specifications on a product<br>that has been discontinued by Fairchild semiconductor.<br>The datasheet is printed for reference information only.                                                         |
|                           | In Design<br>First Production<br>Full Production                                                                                                                                                                                  |